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Abstract:

This article presents an empirical evaluation of text classification methods in literary domain. 
This study compared the performance of two popular algorithms, naïve Bayes and Support 
Vector Machines in two literary text classification tasks: the eroticism classification of 
Dickinson’s poems and the sentimentalism classification of chapters in early American novels. 
The algorithms were also combined with three text pre-processing tools, namely stemming, 
stopword removal, and statistical feature selection, to study the impact of these tools on the 
classifiers’ performance in the literary setting. Existing studies outside the literary domain 
indicated that SVMs are generally better than naïve Bayes classifiers. However, in this study 
SVMs were not all winners. Both algorithms achieved high accuracies in sentimental chapter 
classification, but the naïve Bayes classifier outperformed the SVM classifier in erotic poem 
classification. Self feature selection helped both algorithms improve their performance in both 
tasks. However, the two algorithms selected relevant features in different frequency ranges, and 
therefore captured different characteristics of the target classes. The evaluation results in this 
study also suggest that arbitrary feature reduction steps such as stemming and stopword removal 
should be taken very carefully. Some stopwords were highly discriminative features for 
Dickinson’s erotic poem classification. In sentimental chapter classification stemming 
undermined subsequent feature selection by aggressively conflating and neutralizing 
discriminative features. 
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1 Introduction

Text classification is a typical scholarly activity in literary study (Unsworth, 2000; Yu and 

Unsworth, 2006). Humanist scholars organize and study literary texts according to various 

classification criteria, such as topics, authors, styles, and genres. For decades computational 

analysis tools have been used in some literary text classification tasks, such as authorship 

attribution (Mosteller and Wallace, 1964; Holmes, 1994) and stylistic analysis (Holmes, 1998). 

Recently, with the development of machine learning and natural language processing techniques, 

automatic text classification methods2 provide new approaches to more literary text analysis 

problems (Argamon and Olsen, 2006), for example the discriminant analysis and cross entropy 

classification for authorship attribution and stylistic analysis (Craig, 1999; Juola and Bayyen, 

2005), the decision tree classification for genre analysis of Shakespeare’s plays (Ramsay, 2004), 

the SVM classification for knowledge class assignment of the Encyclopédie entries (Horton et al., 

2007), the naïve Bayes classification for the eroticism analysis of Dickinson’s poems (Plaisant et 

al., 2006), and the naïve Bayes classification for sentimentalism analysis of early American 

novels (Horton et al., 2006).

With the availability of so many text classification methods, empirical evaluation is 

important to provide guidance for method selection in literary text classification applications. A 

number of studies have evaluated popular classification algorithms on a few benchmark data sets 

outside the literary domain (Dumais et al., 1998; Joachims, 1998; Yang and Liu, 1999). However, 

these benchmark data sets were limited to news and web documents, which have different 

                                                          
2 As a supervised learning approach, automatic text classification involves two steps. A classifier is firstly trained on 
some examples with pre-assigned class membership labels (training examples), and then the classifier is used to 
predict the classes of new examples (test examples). See (Sebastiani, 2002) for a comprehensive survey of text 
classification methods.
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characteristics from the creative writings in literature. Moreover, in these evaluation studies, all 

methods were tested on topic classification tasks. In the setting of literary text classification, text 

documents are categorized by many document properties other than topics. Some target classes, 

such as authors and genres, are defined in an objective manner, while other classes, such as the 

sub-genres “eroticism” and “sentimentalism”, are subjectively defined by the groups of scholars 

in these particular fields of study. Prediction is the common purpose of scientific classifiers. 

Hence classifiers are usually evaluated by the measure of classification accuracy. However, 

improving classification accuracy is seldom the goal for literary scholars. High classification 

accuracy provides evidence that some patterns have been inferred to separate the classes. The 

scholars are more interested in the literary knowledge as represented by these linguistic patterns. 

In other words the usual purpose of literary classification is to seek suggestive evidence for 

further scholarly investigation of what texture features characterize the target classes (Ramsay, 

2008). Sometimes scholars would also like to have classifiers as example-based retrieval tools to 

find more documents of a certain kind, such as ekphrastic poems3 and historicist catalog poems4

(Yu and Unsworth, 2006). In these cases only a small number of training examples are available, 

which requires the classifiers to learn fast and accurately. Facing the unique characteristics of 

literary text classification applications, we have to think about the question whether the existing 

conclusions on classification method comparison still hold for literary text classification tasks.

This article describes an empirical evaluation of text classification methods in the literary 

domain. Based on the above use scenarios this study evaluates the classification methods from 

three perspectives: classification accuracy, literary knowledge discovery, and potential for 

                                                          
3 Heffernan (2004) defined ekphrasis as the “literary representation of visual art”. An ekphrastic poem is written in 
response to all kinds of artworks, including drawings, paintings, sculpture, dance, movie, etc.
4 Professor Ted Underwood describes it as “a speaker looks at an object (the moon or the sea, or whatever)
and thinks about all the different civilizations that have seen the same object, imagining what they may have felt, 
and implicitly contrasting them to the present.”
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example-based retrieval. Because no benchmark data is available in this domain, the methods are 

compared on two specific sub-genre classification tasks as case studies, both focusing on 

identifying certain kinds of emotion, a document property other than topic.

The first task is the eroticism classification of Emily Dickinson’s poems. The debate over 

what counts as and constitutes the erotic in Dickinson has been a primary research problem in 

Dickinson studies for the last half century (Plaisant et al., 2006). To study the erotic language 

patterns in Dickinson’s poems, a group of Dickinson scholars at University of Maryland at 

College Park compiled a Dickinson erotic poem collection which consists of 269 XML-encoded 

letters comprising nearly all the correspondence between the poet Emily Dickinson and Susan 

Huntington (Gilbert) Dickinson, her sister-in-law. The long letters which involve both erotic and 

not-erotic contents were excluded from the collection. The scholars assessed the 269 letters as 

either erotic or not5. Eventually 102 letters were labeled as erotic (positive), and 167 not-erotic

(negative).

The second task is the sentimentalism classification of chapters in early American novels. 

Although academic study of sentimental fiction has been well accepted in the past few decades, 

academic disagreement persists about what constitutes textual sentimentality and how to 

examine sentimental texts in serious criticism (Horton et al., 2006). To explore what linguistic 

patterns characterize the subgenre of sentimentalism, two literary scholars at the University of 

Virginia constructed a collection of five novels in the mid-nineteenth century sentimental period 

which are generally considered to exhibit sentimental features: Uncle Tom’s Cabin, Incidents in 

the Life of a Slave Girl, Charlotte: a Tale of Truth, Charlotte’s Daughter, and The Minister’s 

wooing. The scholars assessed the sentimentality level of each of the 184 chapters as either 

“high” or “low”. Among them 95 chapters were labeled as “high” and 89 as “low”. 
                                                          
5 The scholars discussed and resolved the disagreements during the assessment.
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Two popular text classification algorithms, naïve Bayes and Support Vector Machines 

(SVMs), are chosen as the subjects of evaluation. Existing studies indicate that SVMs are among 

the best text classifiers to date (Dumais et al., 1998; Joachims, 1998; Yang and Liu, 1999). Naïve 

Bayes is a simple but effective Bayesian learning method (Domingos and Pazzani, 1997), often 

used as a baseline algorithm. This study compares the performance of these two algorithms on 

eroticism classification and sentimentalism classification tasks.

Algorithm selection is not the only factor which affects the classification result. The 

choice of text representation models and text pre-processing options also influence the 

classification performance. The simplest bag-of-words (BOW) model is often used for text 

representation when no prior knowledge is available with regard to specific classification tasks. 

In fact a number of studies have shown that complex features did not help statistical classifiers 

gain significant performance improvement (Cohen, 1995; Dumais et al., 1998; Lewis, 1992; 

Scott and Matwin, 1999). Under the bag-of-words model a text document is converted into a 

vector of word counts. Without feature reduction, a document vector is often defined in a space 

of thousands of dimensions, each dimension corresponding to a word feature. In such a high-

dimensional space many features are of low relevance. Feature reduction is important in order to 

train classifiers with good generalizability as well as reducing the computation cost. Stemming, 

stopword removal, and statistical feature selection are three common feature reduction tools in 

text classification. Studies have shown that in some situations, these tools could interact with 

classification methods, and consequently affect the classifiers’ performance (McCallum and 

Nigam, 1998; Mladenic and Grobelnik, 1999; Mladenic et al., 2004; Riloff, 1995; Scott and 

Matwin, 1999). Based on the above considerations, this study combines naïve Bayes and SVM 



6/35

algorithms with different choices of feature reduction tools, and then examines whether these 

choices affect the algorithms’ performance in literary text classification tasks. 

The rest of this article is organized as follows. Section 2 describes the text classification 

methods, the feature reduction tools and the evaluation measures used in this study. Section 3 

describes the design of the evaluation experiments. Section 4 and 5 report the evaluation results 

in the eroticism classification and the sentimentalism classification tasks respectively. Section 6 

concludes with discussions of the evaluation results across the two case studies.

2 Classification methods, feature reduction tools and 
evaluation measures

2.1 Naïve Bayes and SVM classifiers

Naïve Bayes is a highly practical Bayesian learning method. It assumes that the feature values 

are conditionally independent given the target value, and therefore significantly reduces the 

computation cost (Mitchell, 1997). Although real world data (e.g. text data) often violate this 

assumption, naïve Bayes classifier can still be optimal under zero-one loss even when the 

independence assumption is violated by a wide margin (Domingos and Pazzani, 1997). As a 

simple but effective method, naïve Bayes is often included in comparative evaluation of text 

classification methods (Dumais et al., 1998; Joachims, 1998; Sebastiani, 2002; Yang and Liu, 

1999). 

The naïve Bayes algorithm can be implemented in various ways. Two naïve Bayes 

variations are widely used in text classification; they are called the multi-variate Bernoulli model 

and the multinomial model (McCallum and Nigam, 1998). The multi-variate Bernoulli model 

(abbreviated as “nb-bool” in this article) uses word presence or absence (one or zero) as feature 
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values (Boolean). The multinomial model (abbreviated as “nb-tf”) uses word frequencies as 

feature values. Previous studies on topic classification tasks showed that the multi-variate 

Bernoulli model is more suitable for data sets with small vocabularies, while the multinomial 

model is better on larger vocabularies (Lewis, 1998; McCallum and Nigam, 1998). However, 

recent studies demonstrate that naïve Bayes classifiers with word presence/absence values 

performed better in predicting opinion polarities of movie reviews (Pang et al., 2002). In this 

study both target classes (eroticism and sentimentalism) are related to emotion, therefore both 

naïve Bayes variations are implemented and compared based on the description in Mitchell 

(1997). 

SVMs are a family of supervised learning methods developed by Vapnik et al. based on the 

Structural Risk Minimization principle from statistical learning theory (Vapnik, 1982;1999). As 

linear classifiers (with linear kernel), SVMs aim to find the hyperplanes that separate data points 

with the maximal margins between the two decision boundaries. Aiming to minimize the 

generalization error, SVMs have the advantage of reducing the risk of overfitting. SVMs

outperform other text classification methods in a number of comparative evaluations on topic 

classification tasks (Dumais et al., 1998; Joachims, 1998; Yang and Liu, 1999). 

The SVM algorithm also allow for various kinds of word frequency measures as feature 

values, which results in multiple variations. In this study the SVM algorithm is combined with 

four candidate text representations. The first one is “svm-bool”, which uses word presence or 

absence as feature value. The second one is “svm-tf”, which uses word (term) frequency as 

feature value. The third one is “svm-ntf”, which uses normalized word frequency as feature value. 
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The last one is “svm-tfidf”, which uses term frequency weighted by inverse document frequency 

as feature value. The SVM-light package6 and its default parameter settings are used in this study.

Table 1 summarizes the combinations of classification algorithms and text representation 

models. For each algorithm the variation with the best performance in the initial evaluation 

experiment will be used in the following experiments.

Table 1: variations of SVM and naïve Bayes classification methods

Feature values
Algorithms word 

presence/absence
original
term frequency

normalized 
term frequency

idf-weighted 
term frequency

SVM svm-bool svm-tf svm-ntf svm-tfidf
naïve Bayes nb-bool nb-tf n/a n/a

2.2 Stemming

In text classification the stemming process conflates a group of inflected words with the same 

stems into one single feature, assuming that they bear similar meanings. However, sometimes 

different forms of the same word contribute to the classification in different ways. For example, 

distinguishing the singular and plural forms of nouns and different verb tenses improved 

terrorism document classification (Riloff, 1995). Hence stemming might affect text classification 

in both positive and negative ways. (Scott and Matwin, 1999; Sebastiani, 2002). This study uses 

the Porter Stemmer (Porter, 1980) to stem words. Complementary look-up tables for irregular 

nouns and verbs7 are also used because the Porter stemmer does not take into consideration

irregular nouns and verbs.

                                                          
6 This software can be downloaded from http://svmlight.joachims.org/.
7 An irregular verb list is obtained from http://www.learnenglish.de/Level1/IRREGULARVERBS.htm, and an 
irregular noun list from http://www.esldesk.com/esl-quizzes/irregular-nouns/irregular-nouns.htm.
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2.3 The role of stopwords

In information retrieval, stopwords mean extremely common words, such as “the” and “of”, 

which are considered useless and then removed from the queries and the document (Baeza-Yates 

and Ribeiro-Neto, 1999). Since common words are mostly function words, the concepts 

“common words” and “function words” are usually considered as synonyms. But they are 

actually overlapping but not equivalent concepts. “Common words” are defined and selected

based on word frequencies in a specific collection. A common word in one collection might not 

be common in another one. Function words are “closed-class” word groups with constant 

members. They do not carry concrete meaning, but they have important role in grammar. 

Function words proved to be useful for some text classification tasks. For example the pronoun 

“my” is a very useful word feature to identify student homepages (McCallum and Nigam, 1998). 

Prepositions help identify joint venture documents (Riloff, 1995). Function words are even the 

major stylistic markers in genre analysis, stylistic analysis and authorship attribution (Argamon, 

Biber, 1988, 1995; Holmes, 1994; Saric and Stein, 2003). This study tests the effect of stopwords 

on literary text classification based on both “common words” and “function words” definitions.

2.4 Statistical feature selection

Stemming and stopword removal are “arbitrary” feature reduction tools regardless of 

classification tasks. Statistical feature selection methods measure the weights of features based 

on their relevance to the classes and select the features with heaviest weights. Feature selection 

methods are often used as pre-processing steps before classification because they are assumed to 

be independent of classification methods (Yang and Pedersen, 1997; Joachims 1998). However, 

Mladenic and Grobelnik (1999) have found that feature selection methods could interact with 

classification methods. For example, information gain has negative effects on naïve Bayes 
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classifiers, while Odds ratio fits naïve Bayes classifiers best. Forman (2003) found that no 

feature selection methods can improve the performance of SVM classifiers. Because both SVMs

and naïve Bayes classifiers are linear classifiers, each of their feature has a weight (coefficient) 

in the linear decision functions. Therefore both SVM and naïve Bayes algorithms can be used as 

feature selection methods as well (Guyon, 2002; Mladenic et al., 2004). The feature weighting 

function in naïve Bayes algorithm is actually the same as Odds ratio (Mladenic and Grobelnik, 

1999). This study uses SVM and naïve Bayes algorithms themselves as feature selection methods.

2.5 Classification evaluation methods

Cross validation and hold-out tests are the usual methods for classification result evaluation. N-

fold cross validation splits a data set into N folds and runs classification experiment N times. 

Each time one fold of data is used as test set and the classifier is trained on the other N-1 folds of 

data. The classification accuracy is averaged over the results of N runs. Hold-out test divides a 

data set into a training subset and a test subset. A classifier is trained on the training subset and 

tested on the test subset. For data sets with a small number of examples, an arbitrary split would 

result in both small training and test sets, potentially yielding varied results for different ways of 

splitting. Both of the data sets in this study have no more than two hundred examples, therefore 

10-fold cross validation is used to evaluate the classifiers. Paired t-test is used to measure the 

significance of accuracy differences (α=0.05). In the case of comparing multiple means 

Bonferroni correction is used to adjust the significance level in individual comparison (Bland 

and Altman, 1995).

3 Experiment design
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A series of experiments are designed to test the performance of naïve Bayes and SVM 

algorithms combined with different feature reduction tools. The following experiments are run 

for both eroticism classification and sentimentalism classification tasks.

3.1 Experiment 1: document representation model selection

The purpose of this experiment is to choose the best text representation model for each algorithm 

to use in the following experiments. Without prior knowledge, the initial feature set for the 

eroticism classification is the full vocabulary excluding the words occurred only once. According 

to the scholars’ domain knowledge, the initial feature set for the sentimentalism classification is 

the content words - nouns (except proper nouns), verbs, adjectives and adverbs. Rare words 

(frequency<5) are excluded from the vocabulary. The Brill part-of-speech tagger (Brill, 1995) is 

used to extract the content words.

3.2 Experiment 2: using stopwords as feature sets

This experiment evaluates the usefulness of stopwords in the two classification tasks. There are 

two ways to evaluate the contribution of stopwords to classification. The first approach compares 

the accuracies before and after removing stopwords from the feature set. The second approach

directly uses stopwords as independent feature sets for classification. In text classification, 

usually a large number of features are redundant (Joachims, 1998). If some features are removed 

and the classification accuracy does not change, it does not necessarily mean that these features 

are not relevant because similar features might exist in the feature sets, contributing to the 

classification. Hence the second approach is used to design this experiment. Two definitions of 

stop words are examined respectively. The common word list generated from the Brown Corpus 
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and the function word groups generated by the Brill part-of-speech tagger are used as 

independent feature sets for classification. 

3.3 Experiment 3: stemming

This experiment evaluates the effect of stemming on classification performance at both macro 

and micro levels. At macro level, it examines whether the overall classification accuracies

change significantly after stemming. At micro level it compares the contribution of individual 

features before and after stemming toward classification. For example, the features “woman” and 

“women” will be merged as one feature “woman” after stemming. If “woman” and ‘women” are 

relevant to the classes (e.g. the eroticism in Dickinson’s poem) in a similar way, this word 

stemming and merging event should not negatively affect the classification result. Otherwise, if 

one word indicates “erotic” and the other one indicates “not-erotic”, the conflation would 

neutralize two discriminative features and result in performance decrease. The idea of stemming

and merging word features is similar to word clustering. All words with the same stem are 

gathered into one cluster. To group words into clusters, Baker and McCallum (1998) developed 

the averaged Kullback-Leibler-Divergence (KLD) to measure the similarity between words with 

regard to their contributions to classification. The smaller the KLD values (minimum=0), the 

more similar the words are. Similar words are then grouped into the same clusters. In this study 

KLD is used in a different way. The KLD between original features and their conflated forms are 

computed and sorted in decreasing order. Good conflations with KLD values close to zero are 

located at the bottom of the list, and bad conflations with high KLD values are at the top. 

3.4 Experiment 4: statistical feature selection
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The effectiveness of feature selection is measured from two perspectives. The classification 

accuracy measures the relevance of the selected features. The feature reduction rate measures the 

compactness of the selected feature subset. Feature reduction rate describes the proportion of 

features removed from the original feature set. The reduced feature set has to cover all 

documents, which means no empty document vectors should be generated after feature reduction 

(Yang and Pedersen, 1997). For each classifier the features are sorted in decreasing order by 

their absolute weights in the linear decision function. The top-ranked (heaviest) 10%, 20%, 30%, 

40%, 50%, 60%, 70%, 80% and 90% features are selected as the reduced feature sets to build

new document vectors. The cross validation accuracies before and after the feature selection are 

compared to see if there are significant changes. The feature reduction rates are compared across 

classifiers. This experiment can start with either the stemmed feature sets or the original feature 

sets. To examine the potential interaction between stemming and statistical feature selection, the 

above experiments are repeated on both original and stemmed feature sets. 

3.5 Experiment 5: learning curve and confidence curve

A learning curve describes a classifier’s performance growth with increasing number of training 

examples. The turning point where the curve becomes flat indicates the minimum number of 

training examples needed for stable prediction accuracy. In the learning curve experiment, 10% 

examples will be reserved as test examples, and the rest 90% are used for training. The training 

set size increases from 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, to 90%. At each size the 

classification algorithm runs 50 times. Each time the specified percent of data is randomly 

selected from the 90% training set. The 50 classification accuracies are then averaged at each 

different training set size. At the beginning, the whole data set is split into ten folds. The above 
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experiment is repeated on each fold. The averaged classification accuracies will be used to draw 

the learning curve.

A linear classifier outputs a prediction value for each test example. This value indicates the 

distance between the test example and the decision hyperplane. The farther the data point is from 

the decision hyperplane, the more confident is the prediction. In this sense, the distance is a kind 

of confidence index of the prediction. The confidence curve experiment compares the confidence 

of each classifier’s predictions on the same test data. The data set is randomly split to 60% 

training set and 40% testing set. Each classifier’s predictions are sorted in decreasing order. The 

confidence curve plots the classifier’s prediction accuracies in the top 10%, 20%, 30%, 40%, 

50%, 60%, 70%, 80%, 90% and 100% predictions. Slowly decreasing confidence curve means 

the classifier is able to maintain high confidence for most of its predictions.

4 The Dickinson erotic poem classification

The Dickinson data set contains 269 poems, among which 102 poems were labeled as erotic

(positive), and 167 not-erotic (negative). The original vocabulary of the Dickinson collection 

consists of 3984 unique words. 1253 words remain after excluding the words which occur only 

once.

4.1 The text representation model selection

Table 2 lists the classification accuracies of SVM and naïve Bayes variations. “Svm-ntf” is the 

best representation for SVM. It is significantly better than “svm-bool”, but its differences with 

“svm-tf” and “svm-tfidf” are not significant (see Table 3). For naïve Bayes variations, “nb-tf” is 

better than “nb-bool” and the majority baseline, but the differences are not significant. “Svm-ntf” 

and “nb-tf” will be used in the following experiments. 
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Table 2: choosing text representations (Dickinson)

text representation model 10-fold CV accuracy (%)
svm-bool 66.23

svm-tf 68.40
svm-ntf 71.42

svm-tfidf 67.31
nb-bool 65.46

nb-tf 68.45
majority vote 62.08

Table 3: paired t-tests for choosing text representations (Dickinson)

pairs t p-value
svm-ntf vs.svm-bool 3.509 0.007*
svm-ntf vs. svm-tf 1.355 0.208

svm-ntf vs. svm-tfidf 1.946 0.083
svm-ntf vs. majority 3.911 0.004*

nb-tf vs. nb-bool 1.441 0.183
nb-tf vs. majority 1.280 0.232
svm-ntf vs. nb-tf 0.513 0.620

4.2 Stopword features

The Brown stopword list consists of 425 most common words in the Brown corpus. 306 of them

are found in Dickinson poems, but most of them are not longer “common”. Table 4 compares the 

classification accuracies with different stopword feature sets. The 306 Brown stopword features 

work as well as the total 911 word features for the eroticism classification. The pronoun group 

has only 29 words, but the classifiers with pronoun features achieve the level of accuracy close 

to those with all 911 features. “You” and “I” are the best individual predictors for erotic poems. 

In summary stopwords are highly discriminative features for Dickinson erotic poem 

classification.

Table 4: the performance of stopword features (Dickinson)
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feature set size svm-ntf (%) nb-tf (%)
all 1253 71.4 68.5
Brown stopwords 306 69.6 69.9
pronoun 29 68.4 66.6
modal 14 52.1 47.6
prep-conj 67 56.2 57.3
determiner 19 59.8 60.3

4.3 Stemming

Table 5 lists the classification accuracies before and after stemming. At the macro level, the 

feature set is reduced by 13%, but there is no significant accuracy change before and after 

stemming. At the micro level, table 6 lists a few conflation events with largest and smallest KLD 

values. Some events are good, such as merging “silently” with “silent”. Some conflations are bad

(with large KLD values), such as merging “hearts” with “heart”, “women” with “woman” and 

“thinking” with “think”. For some nouns, the singular forms are more relevant to erotic poems 

while the plural forms are more relevant to non-erotic poems. A possible explanation is that 

singular words like “woman” and “heart” are more self-portraying than their plural forms 

“women” and “hearts”.

A usual pre-processing step in text classification is to convert all words into lower cases. 

Dickinson is known for her unconventional capitalization. Many words, especially nouns, were 

capitalized no matter where they occurred. A Dickinson scholar explained it as an old-fashioned 

emphasis borrowed from German. This study examines the case merge as a special kind of word 

conflation. At the macro level no significant classification accuracy change is observed after the 

case merge. At the micro level there exist both good and bad case merges. For some words, 

capitalization does not change their relevance to eroticism, for example “Dream” vs. “dream”, 

“Place” vs. “place”, and “Road” vs. “road”. For other words, the capitalized forms bear different 

meanings, for example “Joy” vs. “joy”, “Royal” vs. “royal”, “Red” vs. “red”, and “Love” vs. 
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“love”. In these cases, Dickinson used the capitalized forms to describe general concepts in 

abstract thinking in non-erotic poems, while she used the lower case forms to describe personal 

life scenarios in erotic poems.

For both case merging and stemming experiments, the overall classification accuracies do 

not change significantly. But it does not necessarily mean that all of these conflations do not 

matter. In fact, both good and bad conflations occur simultaneously, although their effects are 

neutralized overall.

Table 5: the effect of stemming (Dickinson)

stemming feature set “svm-ntf” accuracy (%) “nb-tf” accuracy 
(%)

before case merging 1253 71.4 68.5
before stemming 1049 70.7 69.9
partial stemming 959 69.9 69.2
full stemming 911 70.7 69.2

Table 6: KLD rankings of stemming/merging events (Dickinson)

words before merge words after merge KLD
hearts heart 1.029
heart heart 0.006
thinking think 0.785
thought think 0.259
think think 0.096
woman woman 0.229
women woman 0.060
silently silent 0
silent silent 0

4.4 Statistical feature selection

Table 7 shows the naïve Bayes feature selection results. For the stemmed feature set, the 

classification accuracy increases from 69.2% to 81.0% after self feature selection. The paired t-

test result shows that the accuracy difference is significant (t = 6.449, p < 0.001). However naïve
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Bayes self feature selection can only reduce the feature set up to 40% without generating empty 

documents. For the not-stemmed feature set, feature selection improves the accuracy even more 

(from 68.5% to 82.5%). However, there is no significant difference between the feature 

reduction results with or without stemming. Therefore stemming does not significantly affect the 

naïve Bayes feature selection in this task (t = 0.675, p = 0.517).

Table 7: naïve Bayes self feature selection (Dickinson)

During feature reduction the SVM classification accuracies increase with some 

fluctuations (table 8). The accuracy changes from 70.7% to 76.2% for stemmed features, and 

from 71.4% to 77.0% for not-stemmed features. The improvements are significant (t = 3.143, p = 

0.012), although not as much as the improvements for naïve Bayes. However, SVM yields high 

feature reduction rate. Actually SVM with the top 10% features performs better than SVM with 

the entire feature set.

Table 8: SVM self feature selection (Dickinson)

with stemming without stemming
percent features accuracy (%) features accuracy (%)
100% 911 69.2 1253 68.5
90% 820 75.0 1128 72.5
80% 729 76.2 1003 78.8
70% 638 78.4 877 82.5
60% 547 81.0 752 -
50% 456 - 627 -
40% 364 - 501 -
30% 273 - 376 -
20% 182 - 251 -
10% 91 - 125 -
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To compare the two feature ranking and selection methods in more detail, Figure 1 plots 

the features with their SVM weights on X axis and naïve Bayes weights on Y axis. The two 

methods generally agree upon which features are “erotic” or not, because most features fall into 

the first and third quadrants in Figure 1. However there are only 27 shared features in both top 

100 feature lists. Apparently the two methods prefer different kinds of features as the top ones.

Figure 1: SVM and naïve Bayes feature ranking agreement (Dickinson)

with stemming without stemming
percent features accuracy (%) features accuracy (%)
100% 911 70.7 1253 71.4
90% 820 67.7 1128 66.9
80% 729 71.0 1003 67.3
70% 638 71.4 877 69.1
60% 547 71.8 752 72.1
50% 456 72.5 627 73.3
40% 364 73.2 501 73.6
30% 273 74.7 376 73.2
20% 182 74.0 251 74.0
10% 91 76.2 125 77.0
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Figure 2 plots the relation between the feature ranks and their weights. The feature 

weights are normalized as proportional to the top feature weight. The left figure shows that the 

SVM feature weights decrease quickly and smoothly from top rank to bottom rank. The small 

number of top features have strong influence on the classification decisions. The remaining 

features are not important due to the small feature weights. This explains the SVM high 

reduction rate from one aspect. The right figure shows that there are large numbers of naïve

Bayes features with same weights. The feature values decrease slowly. Most features ranked in 

the middle still have heavy feature weights. Because of the large number of heavy weight 

features, naïve Bayes can not achieve high feature reduction rate.

Figure 2: SVM and naïve Bayes feature ranks and weights
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Both “svm-ntf” and “nb-tf” use word frequencies as feature values, normalized or not. 

Figure 3 plots the relations between feature ranks and their frequencies for both classifiers. The 

left figure (SVM) shows that high frequency words accumulate at the top SVM feature ranks. 

Therefore a small feature subset is enough to cover the whole collection without generating 

empty documents. In contrast, the right figure (naïve Bayes) shows that low frequency words 

dominate the top naïve Bayes feature ranks. Most high frequent words rank in the middle, so a 

larger feature subset is needed to avoid generating empty documents. In consequence naïve

Bayes cannot achieve high reduction rate. 

Figure 3: SVM and naïve Bayes feature ranks and frequencies
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The above relations between feature ranks and frequencies can be explained by the 

feature ranking functions of the two methods. “Nb-tf” uses the log probability ratio 

)|(

)|(
log

negwp

poswp
 to measure feature weights (Mladenic and Grobelnik, 1999). For example, if 

words A and B occur in exactly the same documents, and B’s occurrences in each document is 

always twice as A’s occurrences, “nb-tf” would assign the same weights for A and B.  “Svm-ntf” 

uses the function 



l

i
ijiij xyw

1

 to measure feature weights. In this function xij is the normalized 

frequency for word wj in the Support Vector i; αi is the Support Vector’s non-negative coefficient 

and yi is its class label (1 or -1). Therefore in the above example “svm-ntf” would assign word B 

with doubled weight of word A. In Dickinson’s poems most words are not frequent, but their 

frequency ratio in the two classes could be high. Naïve Bayes assigns heavy weights to these 

words while SVM devalues them.

The difference between the two feature selection methods is also related to the feature 

informativeness. Naïve Bayes selects unique words in each category as top features, which are 

usually in low frequencies. The scholars are surprised at the first sight of these words (e.g. 

“write”, “mine”, and “Vinnie”), but they managed to make sense of them later. A possible 

explanation is that the occurrences of these words are very limited, therefore it is not hard for the 

scholars to associate the words with their context and infer their relevance to eroticism. In 

contrast, SVM chooses the high frequency words as top features, such as the pronouns “you”, “I”, 

“my”, “me”, “your” and “her”. It is within the scholars’ prior knowledge that pronouns are 

necessary to construct personal conversations. Although these features do not surprise the 

scholars, they exhibit the common characteristics of Dickinson’s erotic poems. This result is 
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consistent with the stopword experiment result in that pronouns are highly discriminant features 

for eroticism classification.

4.5 Learning curve and confidence curve

Both classifiers’ learning curves and confidence curves are plotted in Figure 4. The left figure 

shows that naïve Bayes learns faster than SVM in this task. However both learning curves do not 

level off, which indicates that the classifiers need more training data to reach stable performance. 

For both algorithms the classification accuracies decrease at similar speed with the decrease of 

the confidence (see the right figure in Figure 4).

Figure 4: learning curves and confidence curves (Dickinson)

5 The sentiment classification of early American novel 
chapters

For sentimentalism analysis, the literary scholars at University of Virginia are most interested in 

content words. But they suggested that proper nouns be excluded from the feature set because 

most of them are character names. A sentimentalism classifier aims to learn the sentimental 

language rather than the character designs in particular novels. The sentimentalism collection 
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consists of 184 chapters, among which 95 chapters have high level of sentimentality and 89 

chapters have low sentimental level. The original vocabulary contains 19585 word tokens. 

Because the average chapter length is much longer than that of the Dickinson poems, the 

minimum word frequency is arbitrarily set to 5. Again, the Brill tagger is used to extract content 

words - nouns (without proper nouns), verbs, adjectives and adverbs. Eventually the feature set 

consists of 5704 words.

5.1 Text representation model selection  

Boolean feature representations are the best for sentimentalism classification (table 9). Both 

“svm-bool” and “nb-bool” are significantly better than the majority baseline, but their difference 

with other SVM and naïve Bayes variations are not significant (table 10). “Svm-bool” and “nb-

bool” are then used in the following experiments. 

Table 9: text representation model selection (Sentimentalism)

text representation model 10-fold CV accuracy (%)
svm-bool 66.4

svm-tf 62.0
svm-ntf 63.4

svm-tfidf 60.5
nb-bool 64.9

nb-tf 64.1
majority vote 51.6

Table 10: paired t-tests for text representation model selection (Sentimentalism)

pairs t p-value
svm-bool vs.svm-tf 1.121 0.291

svm-bool vs. svm-ntf 0.675 0.517
svm-bool vs. svm-tfidf 2.500 0.034
svm-bool vs. majority 3.630 0.005*

nb-bool vs. nb-tf 0.352 0.733
nb-bool vs. majority 3.318 0.009*
svm-bool vs. nb-bool 0.647 0.534
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5.2 Stopword features

Table 11 lists the classification accuracies with different stopword groups as feature sets. Neither 

the Brown stopwords nor the function word groups achieved accuracies significantly higher than 

the trivial majority baseline for both algorithms. This result confirms the scholars’ heuristic that 

content words are more relevant in this case.

Table 11: performance of stopword features (Sentimentalism)

feature set size “svm-bool” accuracy (%) “nb-bool” accuracy (%)
all 5704 66.4 64.9
Brown stopwords 404 56.0 57.2
pronoun 27 54.5 58.1
modal 15 54.9 57.1
prep-conj 88 52.1 55.4
determiner 22 54.5 55.7

5.3 Stemming

For sentimentalism classification the accuracies of both classifiers do not change significantly 

after stemming. Stemming reduces the feature set size by 36% (table 12). Some conflations are 

good, such as merging “difficulties” with “difficulty” and “wheels” with “wheel”. Other

conflations are bad, such as merging “wildness” with “wild” and “pitying” with “pity” (table 13). 

“Wildness” is exclusively used in highly sentimental chapters while “wild” occurs in both high 

sentimental and low sentimental chapters with similar frequencies. See below for a few examples 

of using the word “wildness” in sentimental chapter.

“There was a piercing wildness in the cry…” (Uncle Tom’s Cabin, chapter 27)
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“Her soft brown eyes had a flash of despairing wildness in them…” (The Minister’s 

Wooing, chapter 23)

Table 12: the effect of stemming (Sentimentalism)

stemming feature set “svm-bool” accuracy (%) nb-bool accuracy (%)
before 5704 66.4 64.9
after 3669 66.9 64.3

Table 13: KLD rankings of stemming/merging events (Sentimentalism)

words before merge words after merge KLD
wildness wild 0.583
wild wild 0.003
pitying piti 0.515
pitiful piti 0.041
pitied piti 0.005
pity piti 0.001
difficulties difficulti 0
difficulty difficulti 0
wheels wheel 0
wheel wheel 0

5.4 Statistical feature selection

For stemmed features, the naïve Bayes classification accuracy increases from 70.2% to 88.0% 

after self feature selection (table 14). The performance difference is significant (t = 7.796, p <

0.001). The feature reduction rate is as high as 80%. Feature reduction without stemming 

produces even more accuracy improvement (from 65.4% to 92.4%) and higher reduction rate

(90%). However stemming does not significantly affect the naïve Bayes feature reduction results.

Table 14: naïve Bayes self feature selection (Sentimentalism)
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For stemmed features, the SVM classification accuracy fluctuates with the increase of 

feature reduction rate. There is no significant accuracy improvement after feature reduction.

However, without stemming the SVM classification accuracy steadily improves with the increase 

of feature reduction rate. With top 10% not-stemmed features the SVM classifier achieves 94.1% 

accuracy. 

Why does stemming affect SVM feature selection in sentimentalism classification but not 

in eroticism classification? Recall that stemming reduces features by 13% for SVM eroticism 

classification, but the reduction rate is 36% for SVM sentimentalism classification. The 

stemming process might have conflated and neutralized a large number of discriminative features, 

and therefore resulted in the loss of candidate discriminative features for future statistical feature 

selection. 

Table 14: SVM self feature selection (Sentimentalism)

with stemming without stemming
percent features accuracy (%) features accuracy (%)
100% 3669 70.2 5704 65.4
90% 3302 68.8 5134 67.4
80% 2935 71.5 4563 73.6
70% 2568 76.5 3993 77.7
60% 2201 80.6 3422 80.4
50% 1835 81.7 2852 83.8
40% 1468 84.1 2282 86.3
30% 1101 88.7 1711 89.2
20% 734 88.0 1141 91.8
10% 367 - 570 92.4
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Both naïve Bayes and SVM algorithms reach comparable classification accuracies with their 

own top 10% (570) features. However, there are only 1/3 shared features in the two top 10% 

feature lists. Figure 5 plots the relation between the feature weights measured by the two feature 

selection methods. In the figure the points disperse away from the diagonal toward both ends of 

the axes. In other words, the two weighting measures agree basically upon the light-weighted 

features, but they disagree upon the features with heaviest weights.

Figure 5: naïve Bayes and SVM feature ranking agreement

with stemming without stemming
percent features accuracy (%) features accuracy (%)
100% 3669 69.5 5704 67.0
90% 3302 66.3 5134 67.1
80% 2935 65.7 4563 72.8
70% 2568 66.3 3993 76.7
60% 2201 65.2 3422 82.4
50% 1835 62.0 2852 85.9
40% 1468 62.0 2282 88.8
30% 1101 61.4 1711 89.7
20% 734 63.6 1141 91.2
10% 367 66.3 570 94.1
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Figure 6 plots the feature ranks and their weights for both classifiers. Similar to Figure 2 

in the Dickinson erotic poem classification, the left figure in Figure 6 shows that the SVM 

feature weights decrease quickly and smoothly from top ranks to bottom ranks. This time the 

relations between feature ranks and weights for naïve Bayes (the right figure) and SVM (the left 

figure) are similar, except that SVM feature weights decrease faster. This is consistent with the 

results that the two methods have similar feature reduction rate for sentimentalism classification.

Figure 7 plots feature ranks and their frequencies for both classifiers. Similar to Figure 3 

in the Dickinson erotic poem classification, the top naïve Bayes features (in the right figure) are 

all low frequency words, while the frequencies of the top SVM features (in the left figure) are 

more distributed across the range. This time both algorithms use Boolean feature values, hence 

the frequencies as shown in Figure 7 are the words’ document frequencies8.

                                                          
8 Document frequency is the number of documents in which the word occurs.
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Figure 6: SVM and naïve Bayes feature ranks and weights

Figure 7: SVM and naïve Bayes feature ranks and frequencies

Both SVM and naïve classifiers include some sentimental words in their top feature lists, 

such as “die”, “sorrow”, “beloved” and “agony”. However, many features in both lists do not 

seem “sentimental” to the literary scholars, such as the words “to-morrow”, “paternal” and 

“payment”. The novel chapters are generally longer than the Dickinson poems. It is not 

surprising to find low sentimental text snippets mixed with highly sentimental ones. In 

consequence, some words which are not sentimental are also measured as sentimental because of 

their sentimental context.
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5.5 Learning curves and confidence curves

Figure 8 shows the learning curves and confidence curves of both classifiers. The left figure 

shows that the SVM learning curve starts with low accuracy but improves fast with the increase 

of training example numbers. The learning curve levels off when the number of training 

examples exceeds 40%. The naïve Bayes classifier starts with 88% accuracy with only 10% 

training examples, leaving less room for improvement with the increase of training examples. 

The right figure in Figure 8 shows that the confidence level of naïve Bayes predictions decreases 

more slowly than that of SVM. Overall naïve Bayes has better learning curve and confidence 

curve in sentimentalism classification.

Figure 8: learning curves and confidence curves (Sentimentalism)

6 Conclusion

The evaluation results in this study demonstrate that SVMs are not all winners in literary text 

classification tasks. Both SVM and naïve Bayes classifiers achieved high accuracies in 

sentimental chapter classification, but the naïve Bayes classifier outperformed SVM in erotic 

poem classification. Self feature selection helped both algorithms improve their performance in 
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both tasks. However, the two algorithms selected relevant features in different frequency ranges, 

and therefore captured different characteristics of the target classes. The naïve Bayes classifiers 

prefer words unique to the classes, which are often not frequent. In contrast, SVMs prefer high 

frequent and discriminant words, which are scarce in some genres such as poems. For the 

purpose of feature relevance analysis the two methods should be used as complementary to each 

other rather than one over the other. 

High classification accuracy is not necessarily associated with good generalizability. 

Despite the high accuracy in erotic poem classification, the naïve Bayes classifier is not a good 

example-based eroticism retrieval tool. Its learning curve does not level off with the increase of 

training examples, which indicates limited generalizability. In other words, this classifier is only 

good for summarizing the characteristics of the training data. Both algorithms yield high 

potential for example-based sentimentalism retrieval because of their fast increasing learning 

curves and strong confidences in predictions.

The evaluation results in this study also suggest that arbitrary feature reduction steps such 

as stemming and stopword removal should be taken very carefully. Stopwords were highly 

discriminative features for erotic poem classification. In sentimental chapter classification 

stemming undermined subsequent feature selection by aggressively conflating and neutralizing 

discriminative features. 

Overall, while the use of text classification methods is very promising in literary text 

analysis applications, empirical experience on classification methods obtained from other 

domains should be carefully examined before applying to the new domain.
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